I. PLEDGE OF ALLEGIANCE

II. ROLL CALL

III. BUSINESS MEETING

III-A. PUBLIC COMMUNICATIONS

III-B. OLD BUSINESS

1. PERMIT-APPLICATION #19-01, BROOKVIEW HEIGHTS – 405 LONG HILL AVENUE. Proposal to create a 4-lot residential development involving discharge of stormwater and construction and grading within upland review area.

III-C. NEW BUSINESS

1. PERMIT-APPLICATION #19-02, WEYBOSSET STREET HOUSING DEVELOPMENT-WEYBOSSET STREET. Proposal to create a 4-lot residential development from 5 parcels on a paper street involving wetland fill for driveway construction and disturbance for sewer line installation and construction and grading within upland review area.

2. PERMIT-APPLICATION #19-03, RIVER ROAD TOWNHOUSE DEVELOPMENT – 85/87 RIVER ROAD. Proposal to create a 36-unit residential townhouse development involving driveway construction within upland review area and installation of a detention pond and stormwater level spreader system within upland review area that overflows to a regulated area.

III-D. MISCELLANEOUS

IV. MINUTES

January 10, 2018

V. ADJOURNMENT
Chairman Zahornasky called the Regular Meeting of the Inland Wetlands Commission to order at 7:00 P.M.

I. PLEDGE OF ALLEGIANCE

All in attendance recited the Pledge of Allegiance.

II. ROLL CALL: Gary Zahornasky, Chairman
 Robert Dunford, Commissioner
 Michele Kawalautzki, Commissioner
 Joseph Reilly, Commissioner
 Charlie Wilson, Vice-Chairman

Excused: Jack Goncalves, Commissioner
 Ken Nappi, Commissioner

Also Present: John Cook, Staff

III. BUSINESS MEETING

III-A. PUBLIC COMMUNICATIONS - None

III-B. OLD BUSINESS

1. PERMIT-APPLICATION #19-01, BROOKVIEW HEIGHTS – 405 LONG HILL AVENUE. Proposal to create a 4-lot residential development involving discharge of stormwater and construction and grading within upland review area.

Atty, Dominick Thomas
Cohen & Thomas
315 Main Street
Derby, CT

Atty. Thomas addressed the Commission and stated that they have submitted a revised set of plans in which Fred D'Amico has made some corrections. He also stated that he feels that there should be no issues because it is a 2600 sq. foot upland review grading in which they have presented a Soil Scientist and a Biologist and their reports state that there are no impacts on the wetlands. In his opinion it should be a relatively very simple procedure. Due to the oppositions from the neighborhood in the past ten years and because of the allegations of fill which he thought that they had already addressed. He also stated that the report from the City Engineer and his concerns have been addressed. He continued on that the 1973 City of Shelton aerial topo to the 2008 plan which was one of the initial plans that was done by Mr. D'Amico. Atty. Thomas stated that he did research from old topos and did comparison with additional topos through the years. The one point he wanted to point out was the allegation of the fill. He showed the different topos through the years to make his point. His point is why make the owner of the property now responsible for something that could have happened years prior to his client's purchase of the property.

Atty. Thomas showed many topos and had an overlay from the 1st topo on record through the years. He stated that reasons why the stream could have moved through the years could be Route 8 and also Sikorsky. He continued going through aerial photos throughout the years. He also stated that the aerials also
proves that the claim was corrected done through the years prior to the purchase of the property by his client. To confirm this, there is an aerial view of the area where they are proposing the new site in the 1960s aerial photo. Some of the more recent aerial photos show the building site with the new road and the bridge crossing the stream. The site is located on the bank of the stream and the bridge crossing is not the only road crossing the stream. There is another road that crosses the stream farther downstream.

Staff: John Cook stated that he had reviewed many aerial photos himself from as early as the 1950s and also from other years. He stated that the proposal for the new building site was made in 1980. The new road and bridge were built in 1980. The existing road was built in 1960. The aerial photos from 1960 show the existing road and the bridge crossing the stream. The aerial photos from 1980 show the new road and the bridge crossing the stream.

Attorney: Mr. Thomas stated that he could not say if the regulations are being followed by the applicant. He stated that he had not reviewed the regulations in detail. He stated that he had reviewed the regulations from 1970 and the regulations from 1990. The regulations from 1970 are not as detailed as the regulations from 1990. The regulations from 1990 are more detailed and cover more areas.

Mr. D’Amico stated that he addressed most of the items on the list and has submitted a new set of plans. There were some incorrect numbers on the catch basin that he did correct. He stated that he could adjust the size of the catch basin to bring it closer to the front and pull away from the edge. He stated that he did not do a cross section but will have it completed and brought to Staff’s office. It will not be cut into the embankment.
date. The intent is that it will be outside of the wetlands but the actual drawing of the footbridge is going to be done at a later date.

Chairman Zahornasky stated that he was concerned with what that fill contains. No one has ever tested that. He stated that he would like to know what that fill contains whether it is hazardous waste or not and he also stated that he could not see the benefit to his client for him to have done any filling for a 4 lot subdivision. It could be a possibility that the previous owner did so in having other ideas about the property when they owned it. However there is still a violation and there is still fill that occurred and the concern should be what’s in it. He stated that the Commission needs to discuss this further, possibly with the City Engineer or possibly with Corporation Counsel.

END SIDE A – TAPE 1
The R-1 zoned site is proposed for 4 single family dwellings on 1/3+/- acre each. A substantially scaled back layout from some of the other proposals submitted to P&Z in the last few years. Incremental filling has taken place in years since 2003 but the investigation indicates filling long before the current owners acquired the original piece. In 2013 additional regulated areas and upland were purchased from CONNDOT.

From the memo to the Planning and Zoning Commission (copy attached) there are two principal areas of concern.

First, ascertaining whether any of the recent fill or past filling operations constitute a violation of local wetland authority. Filling within upland review areas, [buffer standards established in 1989] or within wetland areas since 1974 would be considered regulated activities and should be addressed. Either removal and restoration or permitting after the fact to property sustain.

Second, regardless how the filling is treated. The record indicates substantial fill has taken place at this subject property. Some test holes were conducted with a small machine and only in the most recent fill, not the old fill and not where several homes are indicated. As suggested in the memo to P&Z only through a scientific method with proper expertise to analyze can proper or best assurance be made that there is no violation, or a permit after the fact can be considered or eventually protect future land owners that acquire the subject fill sites. This concern is only to address structural concerns and not those expressed by long-time landowners that assert that other components exist within the old earthen fill condition.

This issue is not one to be taken lightly. The record shows that in 1990/91 a homeowner experienced foundation failure years after moving into the home. Upon detailed analysis recovery showed the home was partially constructed upon multiple feet of fill over inland wetland soils. It was never determined if the fill was a violation or predated regulations.

However, because of finding of unsuitable material under the foundation the following parties became part of a lawsuit by the homeowners:

1. The builder of the home.
2. The parents of the builder of the home who transferred the lot to him.
3. The inland wetlands commission as an entity.
4. The City of Shelton as an entity.
5. The Chairman of the Commission as an entity.
6. The wetlands administrator as an entity.
7. The wetlands administrator as an individual.
8. The building official as an entity.

The contention by the plaintiff was that the defendants knew or should have known of the unsuitable load bearing material. The point is it is known that material has been brought in by multiple owners over the years and construction is proposed over this fill area.
Once determination is made as to how the handle the fill condition and depending on those findings staff offers the following initial comments.

1. The grades show the homes non-walkout so hatchway egress should be shown to demonstrate exit from basement areas of lots 1-3 on the Site Development Plan/E&S Plan.
2. Provide a detail of the foot bridge to cross the brook.
3. Provide two cross sections for lots 2&3 to confirm no further filling is to occur on slope areas as questionable stability may exist presently. No effort to create fill lifts or plan existed when the various fill operations took place.
4. Pending City Engineer verification a drop manhole structure should be installed to provide adequate low pitch discharge 0.05% +/- to reduce scour potential at discharge point.
5. Rotate construction plan view sheet 3/3 to same orientation as Site Development Plan to minimize confusion.
6. Insure lot numbering is the same for all sheets. Sheet 3 does not match sheets 1&2.
7. Provide elevations of profile grid to ease readability.
8. Shift ell fences to vegetation line at top of slope on lot 2; Site Development Plan,
9. Catch basins #3 & #4 exhibit an 8' grade elevation difference within 50' of each other over the cut-de-sac that should be nearly level. Is this a 'busted' grade shot?
10. Regarding the sanitary sewer. The Plan & Profile shows as existing sanitary line where it isn't. It shows a manhole grate at 223.0' an invert of 205.1' but a garage elevation of 277'. A 72' differential but the plot shows it the top of it 20' above the road way surface. The spot elevation of Long Hill Avenue is 307.5' but the grate is shown as 225.7' over 80' lower.

Staff has spoken with both the City Engineer and Assistant City Engineer and showed them the submitted drawings and my initial comments and based on the above findings there are significant grade issues, elevation issues and clarifications. They indicate that the applicant should or the Commission may want addressed before further review proceeds. To this end the application may be withdrawn without prejudice to work on these matters.
January 18, 2019

John R. Cook
Wetlands Coordinator
City of Shelton
54 Hill Street
Shelton, CT 06484

Re: Brookview Heights, 405 Long Hill Avenue;
Site Plan dated 9/17/08

Dear Mr. Cook:

This office has reviewed the proposal to construct a four unit development served by a new road on a four acre interior lot. We have major concerns with the fill that has been placed on the property since 1973. A comparison of the 1973 topography and the 2008 site plan reveals significant changes in the watercourse location and elevation of the property.

Enclosed is a highlighted copy of the submitted plan upon which I have plotted the location of the watercourse in 1973. Additionally, I have noted the increase in the ground elevations from the placement of fill or other soil materials.

There is approximately 12 feet of new fill material near the northwest corner of the home proposed on Lot 2. Additionally, there is an increase in the 1973 ground elevation near the existing watercourse of 20 feet near the southwest corner of Lot 2.

Lastly, there are no drainage calculations submitted for the subsurface stormwater detention system and there are some glaring conflicts with some of the proposed catch basin and storm sewer elevations.

Due to the fact that the stormwater management plan is incomplete, there are conflicts with pipe and structure elevations and the fact that fill material has been introduced immediately adjacent to an existing watercourse and regulated area, I recommend that the application be tabled until the areas of concerns are addressed.

Very truly yours,

Robert F. Kula, P.E.
City Engineer

Enc: Highlighted Site Plan dated 1/16/19

cc: Conservation Commission
 Kenneth Nappi, Planning & Zoning Administrator
 Joseph Ballaro, Building Official

File: 405 Long Hill Avenue Site Plan File
CLARIFICATION OF WETLAND SOIL CRITERIA FOR
HUMAN-ALTERED AND HUMAN-TRANSPORTED SOILS IN CONNECTICUT

The Statute

The Connecticut General Statutes Section 22a-3B defines inland wetlands as:

"land, including submerged land, not regulated pursuant to sections 22a-28 to 22a-35, inclusive, which consists of any of the soil types designated as poorly drained, very poorly drained, alluvial, and floodplain by the National Cooperative Soil Survey, as may be amended from time to time, of the Natural Resources Conservation Service of the United States Department of Agriculture."

The National Cooperative Soil Survey (NCSS) is a nationwide partnership of Federal, regional, State, and local agencies and private entities and institutions (USDA-NRCS 2014). The Natural Resources Conservation Service (NRCS, formerly Soil Conservation Service or SCS) is responsible for the leadership of soil survey activities of the U.S. Department of Agriculture and for the leadership and coordination of NCSS activities.

The Soil Survey of the State of Connecticut is the official NCSS soil survey for Connecticut (Soil Survey Staff). The soil survey is a collection of map units which are areas defined and named in terms of their soil components. The survey contains a detailed description of the properties and qualities of each soil component including drainage class, parent material, and geomorphic component (i.e. soil properties and interpretations referenced in the statute above). Based on these properties, NRCS provides an interpretive list of map units dominated by soil types that meet the wetland soil criteria defined in the statute. This report is referred to as the Connecticut inland Wetland Soils list (available as a Web Soil Survey report1 and on Connecticut eFOGS2). Attention should be given to the appropriate use of soil survey maps in regard to map scale. A relevant excerpt from the 'Use Constraints' section of the Soil Survey of the State of Connecticut metadata is reprinted in Appendix A.

Hydrologic alteration

Alteration of hydrology in the form of lowered water tables (e.g. ditching, tilling, stream alteration/channelization, etc.)

1 Web Soil Survey: Soil Data Explorer tab, Soil Reports sub-tab, ADC Inventory, Selected Soil Interpretations, Inland Wetlands (CT); also available as the USDA-NRCS CT Soils page under "Connecticut Soil Survey Interpretations."
2 NRCS-CT eFOGS: Section II, Soils Information, 2. Soil Tables and Interpretations, Statewide CT, c. CT Inland Wetland Soils

USDA IS AN EQUAL OPPORTUNITY EMPLOYER AND PROVIDER.
are recognized as artificial drainage in the Keys to Soil Taxonomy. By definition, poorly drained and very poorly drained soils that are ditched, filled, or otherwise drained are still recognized as poorly drained and very poorly drained soils.

Human-altered and human-transported soils

Human-altered and human-transported (HAHT) soils is the term used by NRCS that describes soils commonly referred to as (but not limited to) fill or filled, excavated, or anthropogenic. The Soil Survey of the State of Connecticut does not contain detailed descriptions of HAHT soil types. Consequently, the Connecticut Inland Wetland Soils list does not contain map units with wetland HAHT soils. In lieu of NRCS published wetland HAHT soil types, the assignment of drainage class for HAHT soils should be based on the same criteria used to assign soil types in the Soil Survey for the State of Connecticut and on the Connecticut Inland Wetland Soils list. These criteria are defined by the presence of specific diagnostic horizons and properties in the latest edition of the Keys to Soil Taxonomy.

Drainage class for unmapped soil types

Drainage class identifies the natural drainage condition of the soil (USDA-NRCS 2014). It refers to the frequency and duration of wet periods under conditions similar to those under which the soil developed. Drainage class is inferred from observation of landscape position and soil morphology. In some instances direct observations and/or measurements of hydrology and reduced conditions may be used to aid in drainage class determination.

For the Soil Survey of the State of Connecticut, moisture regime was used to assign drainage class to soils. Soil types with anic or periepic moisture regimes are correlated to poorly or very poorly drained drainage class. Appendix B has more information regarding criteria used to diagnose moisture regime.

HAHT soils with anic moisture regimes meet the wetland soils definition in the Connecticut General Statutes section 22a-38 as relates to drainage class. Areas of these soils are therefore wetlands and regulated under the Connecticut Inland Wetlands and Watercourses Act.

Problematic morphologic features in HAHT soils

Human transported materials (i.e. fill) may be sourced from a wide variety of areas, including those with wetland hydrology. Such fill material may exhibit redoximorphic features (i.e. wetland soil morphologic features) associated with the previous soil type before the material was excavated, transported, and redeposited. Such features are termed relict and should not be used as diagnostic criteria for classification as they may indicate a false positive diagnosis of anic moisture regime. Conversely, recent fill material subject to wetland hydrology may not have had enough time under anic conditions to develop redoximorphic features. Such material may indicate a false negative diagnosis of anic moisture regime. This is not to suggest that all problematic features in fill material should be disregarded, however they should receive extra scrutiny from the describer.

6 Artificial drainage is defined here as the removal of free water from soils having anic conditions by surface removing, ditches, or subsoil drains or by application of artificial water body or pond. In these soils water table levels and/or their duration are changed significantly in connection with specific types of land use or soil management. Artificially drained soils are included with soils that have anic conditions. (Soil Survey Staff 2014, page 30).

6 HAHT soils do not, as defined in the Keys to Soil Taxonomy, include soils that are altered solely in regard to hydrology (Soil Survey Staff 2014). For information regarding hydrologic alteration, see the section titled Hydrologic Alteration.

4 Soil Taxonomy is the system of soil classification used by USDA-NRCS to order, name, organize, understand, remember, transfer, and use information about soils (USDA-NRCS 2014). Soil Taxonomy can be applied to all soils, including HAHT soils, regardless of the amount or type of disturbance.

4 The National Technical Committee for Hydric Soils published a technical note regarding altered hydric soils that discusses morphologic...
In cases where the morphologic features of fill material are thought to not accurately reflect the current soil moisture regime (based on best professional judgment), other methods in lieu of morphologic features may be used to identify the actual depth to aquic conditions.

Floodplains and alluvial soils

In Connecticut, all soil types (regardless of soil moisture regime) formed on floodplains from alluvial parent materials are recognized as wetlands as defined in Connecticut General Statute section 22a-38. HAHT soils found in these landscape positions with underlying alluvial parent materials may still correlate to alluvial soils. Further, filled/buried alluvial soils should be scrutinized as to whether they are still subject to a flooding regime that characterizes floodplain and deposits alluvial soils.

Levees and other alteration of flooding regime

Alluvial and floodplain soils in areas that are protected by levees or otherwise altered to remove or lessen the natural flooding regime are still considered alluvial and/or floodplain soils and are considered wetland areas per Connecticut General Statute section 22a-38.

Generalizations concerning depths of fill and how it affects identification of wetland soils

Due to the variability of HAHT soils, generalizations about specific depth of fill should not be used to assign soil moisture regime and drainage class. Only accurate on-site observation, description, and classification using USDA-NRCS standards will provide a definitive technical determination of whether a HAHT soil meets wetland soil criteria defined in Connecticut General Statutes Section 22a-38.

Buried soils, surface mantles, and their effect on drainage class

Soil moisture (including aquic conditions) for the purpose of classification is generally evaluated from the actual soil surface in all soils (HAHT soils, buried soils, or otherwise; Soil Survey Staff 2014). Supplemental information regarding the effect of buried soils and surface mantles on the classification using Soil Taxonomy is given in Appendix C. Examples with illustrations are provided in Appendix D.

Characteristics that can suggest reflect features [NTCS].

7 The Hydric Soil Technical Standard identifies methods to identify anaerobic and saturated conditions in lieu of field indicators based on soil morphology [NTCS 2007]. Anaerobic and/or saturated conditions may correspond to aquic conditions, as defined in the Keys to Soil Taxonomy. Aquic conditions within specified depths are diagnostic criteria for all of the taxonomic suborders mentioned in Appendix B, and hence aquic moisture regime.

8 Soils that classify as [mowero] suborder typify alluvial or floodplain soils. In other soil orders the recognition of alluvial soils taxa is often determined at the sub group level with a prefix of [mow]. A brief discussion of the nature of floodplain soils as relates to classification is on page 426 of Soil Taxonomy (Soil Survey Staff 1999).

9 These areas may be phased according to their usual flooding regime (e.g., Appawamse fine sandy loam, flood protected) and may be dealt with especially according to the degree of flooding regime alteration, as determined by the appropriate local or state officials.

18 A description and list of USDA-NRCS standards is available in the National Soil Survey Handbook Part 600. Of particular note to field professionals making Connecticut Inland Wetlands determinations are:

- Field Book for Describing and Sampling Soils, Version 3.0 (2013)
- Keys to Soil Taxonomy (current edition)
Appendix A:

Excerpt from the Soil Survey of the State of Connecticut (version 13) spatial metadata section titled 'Use Constraints':

This data set is not designed for use as a primary regulatory tool in permitting or citing decisions, but may be used as a reference source. This is public information and may be interpreted by organizations, agencies, units of government, or others based on needs; however, they are responsible for the appropriate application. Federal, State, or local regulatory bodies are not to reassign to the Natural Resources Conservation Service any authority for the decisions that they make. The Natural Resources Conservation Service will not perform any evaluations of these maps for purposes related solely to State or local regulatory programs.

Photographic or digital enlargement of these maps to scales greater than at which they were originally mapped can cause misinterpretation of the data. If enlarged, maps do not show the small areas of contrasting soils that could have been shown at a larger scale. The depicted soil boundaries, interpretations, and analysis derived from them do not eliminate the need for onsite sampling, testing, and detailed study of specific sites for intensive uses. Thus, these data and their interpretations are intended for planning purposes only. Digital data files are periodically updated. Files are dated, and users are responsible for obtaining the latest version of the data.

Appendix B:

Each soil order has its own set of diagnostic criteria (found in the Key to Suborders section of the Keys to Soil Taxonomy) related to whether a soil has an aqualic or peraquic moisture regime. Soils in Connecticut (including HAAD soils) with an aqualic or peraquic moisture regime would classify as one of the following suborders:

- Aquests (Entisols)
- Aquepts (Inceptisols)
- Aquolls (Mollisols)
- Aquods (Spodosols)
- Fibrists, Hemists, or Saprists (Histosols)
- Aqualfs

The Keys to Soil Taxonomy reference specific morphologic features that would classify a soil to one of these (or other) orders and suborders. There is no single accurate rule-of-thumb in regard to morphologic properties to diagnose moisture regime; the Keys should always be used as they are the most significant standard used by USDA-NRCS in the correlation of soils to drainage class and soil types (i.e. series).

The Field Indicators of Hydric Soils in the United States is a standard used to identify and delineate hydric soils in the field for federal wetland delineations. Other state, and/or local laws may specifically reference hydric soils in their definition of wetlands or in the regulations and/or policy that outlines how wetlands should be identified and delineated.
Professionals engaged in the myriad jurisdictions of wetland-related field work will likely be familiar with hydric soil indicators. The Connecticut Inland Wetlands and Watercourses Act does not specifically reference hydric soils in its definition of wetlands and therefore there is no direct statutory link to hydric soil field indicators. Further, hydric soil field indicators were not exclusively used in assigning drainage class to soil types. However, hydric soil field indicators are based on extensive research and field testing and the field indicators of hydric Soils in the United States is an excellent resource for professionals engaged in wetland delineation. While hydric soil field indicators do not serve as direct or indirect evidence of wetlands per Connecticut statute, their presence (including indicators approved for problematic materials) would suggest either aquatic or peraquic moisture regime. There may, however, be soils that meet the Connecticut Inland wetland definition criteria and do not meet a hydric soil field indicator. Field indicators should not be used in lieu of the specific criteria in the Connecticut statute.

Appendix C

Buried soils and their effect on taxonomic classification

Page 37 of Chapter 4 of the Keys to Soil Taxonomy explain the effect of buried soils and surface mantles on the depths used to identify diagnostic soil horizons and characteristics (Soil Survey Staff 2014). Additionally, the USDA-ARSIC has published a Technical Note titled “Buried soils and their effect on taxonomic classification” (Soil Survey Staff 2013) to provide clarification regarding the proper recognition and assignment of control sections and diagnostic horizons and characteristics in soils with surface mantles (e.g., human transported fill or natural deposits). A major issue addressed in this Technical Note relevant to Connecticut General Statutes Section 22a-38 is how to classify soils with thin surface mantle deposits (e.g., thin deposits of fill). Depending on characteristics of the surface mantle, either the whole soil (mantle and underlying soil materials) or only the soil materials under the mantle will be used for identification of diagnostic criteria for classification. Again, soil moisture (including aquatic conditions) is always evaluated from the actual soil surface.
Appendix D

Illustrations of evaluating aquic conditions in HAHT soils

Figure 1 illustrates a case where an original mineral soil, an Aquerts suborder (poorly drained), with aquic conditions at 5 inches is filled with 10 inches of human-transported material. The filled soil is reexamined in regard to aquic conditions, which are found at 15 inches. Though the depth to aquic conditions has increased, in this example the soil would still classify as an Aquerts, with aquic conditions within 20 inches, and meet the definition of a poorly drained soil.

Figure 1. Example of change in depth to aquic conditions after place of fill
Figure 2 illustrates a case where an original mineral soil, an Aaquents suborder (very poorly drained), with morphology indicating aquatic conditions at the surface and with seasonal ponding (5 inch depth over soil surface), is filled with 21 inches of human-transported material. The filled soil is reexamined in regard to aquatic conditions, which are found at 16 inches (based on redoximorphic features in the overlying human-transported material). In this example, the filled soil would classify as an Aaquents or Aaquents with aquatic conditions within 20 inches, and meet the definition of a poorly drained soil.

![Original Soil vs. Filled Soil Diagram]

Figure 2. Example of change in depth to aquatic conditions after place of 21-inches of fill.
Figure 3 shows the same original condition as Figure 2, however in this scenario a greater depth, 30 inches, of human transported material have been deposited. The filled soil is reexamined in regard to aquatic conditions, which are found at 25 inches. In this example, the soil would classify as an Udorthents (not an Aquents or Aqueppts), failing to meet the definition of a poorly drained soil and therefore failing the definition of an inland wetland area.

![Soil Diagram]

Figure 3. Example of change in depth to aquatic conditions after placement of 30 inches of fill.
Appendix E

Glossary

Disclaimer: The following abridged definitions and notes are provided for clarity and quick reference while using this guidance document. They are not intended to, and should not, replace full definitions for these terms found in official USDA-NRCS standards listed in the National Soil Survey Handbook Part 600.

alluvial — Pertaining to material or processes associated with transportation and/or subaerial deposition by concentrated running water. (U.S. Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. Available online. Accessed 05/01/2015).

aquic conditions — Continuous or periodic saturation and reduction (Soil Survey Staff. 2014. Keys to Soil Taxonomy, 12th ed.). Note: aquic conditions are not specific to any range of depths in a soil. For example, a soil may have aquic conditions starting at a depth of 50 centimeters from the soil surface. Aquic conditions are not synonymous with aquic moisture regime.

aquic [silt] moisture regime — A reducing regime that is virtually free of dissolved oxygen because it is saturated by water (Soil Survey Staff. 2014. Keys to Soil Taxonomy, 12th ed.). Note: aquic moisture regime implies the presence of aquic conditions at or near the soil surface. There is not one set of diagnostic criteria or depths to determine aquic moisture regime. Aquic moisture regime is not synonymous with aquic conditions.

flood plain — The nearly level plain that borders a stream and is subject to inundation under flood-stage conditions unless protected artificially. It is usually a constructional landform built of sediment deposited during overflow and lateral migration of the streams. (U.S. Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. Available online. Accessed 05/01/2015).

Human-altered material — Parent material for soil that has undergone soil mixing or disturbance by humans (Soil Survey Staff. 2014. Keys to Soil Taxonomy, 12th ed.). Note: this material is a formal diagnostic characteristic in soil taxonomy and is defined by specific criteria described in the Keys to Soil Taxonomy.

Human-transported material — Parent material for soils that has been transported onto a pedon from a source area outside of that pedon by purposeful human activity (Soil Survey Staff. 2014. Keys to Soil Taxonomy, 12th ed.). Note: this material is a formal diagnostic characteristic in soil taxonomy and is defined by specific criteria described in the Keys to Soil Taxonomy.
hydric soil – a soil that formed under conditions of saturation, flooding, or ponding long enough during the growing season to develop anaerobic conditions in the upper part (U. S. Department of Agriculture, Natural Resources Conservation Service. 2010. Field Indicators of Hydric Soils in the United States, Version 7.0.). Note: "hydric soil" is not a term directly reference by Connecticut General Statutes Section 22a-38 or by USDA-NRCS for the purpose of assigning drainage class to soil components in the official soil survey. This term is defined here and referenced in this guidance document for the purpose of differentiating hydric soils from inland wetland soil types as defined in CT General Statutes.

peraquic moisture regime – a regime where ground water is always at or very close to the soil surface (Soil Survey Staff. 2014. Keys to Soil Taxonomy, 12th ed.).

poorly drained – water is removed so slowly that the soil is wet at shallow depths periodically during the growing season or remains wet for long periods. Note: alteration of the water regime by man, either through drainage or irrigation, is not a consideration in assigning drainage class.

very poorly drained – water is removed so slowly that free water remains at or very near the ground surface during much of the growing season (Soil Survey Division Staff. 1993. Soil survey manual.). Note: alteration of the water regime by man, either through drainage or irrigation, is not a consideration in assigning drainage class.
References:

There was more discussion regarding the topos from the past to most recent and whether or not the fill needs to be tested. The Commission decided that they need to discuss this further and do a site visit.

III-C. NEW BUSINESS

1. PERMIT-APPLICATION #19-02, WEYBOSSET STREET HOUSING DEVELOPMENT-WEYBOSSET STREET. Proposal to create a 4-lot residential development from 5 parcels on a paper street involving wetland fill for driveway construction and disturbance for sewer line installation and construction and grading within upland review area.
The applicant was not there to address the Commission. This is a new application. In the past the applicant came in with another application for 5 houses on a paper street and the Conservation and Land Trust had issues.

Commissioner received application for review.

2. PERMIT-APPLICATION #19-03, RIVER ROAD TOWNHOUSE DEVELOPMENT – 85/97 RIVER ROAD. Proposal to create a 36-unit residential townhouse development involving driveway construction within upland review area and installation of a detention pond and stormwater level spreader system within upland review area that overflows to a regulated area.

Manny Silva
Rose Tiso & Co

He was there representing Key development regarding property on River Road. He showed plans regarding the detention pond. He also talked about the fire truck turnaround driveway that clips the upland review area. He spoke about where the catch basins were on site as well as the pipes that are on site. There was discussion regarding drainage from the subdivision up above. The reason the applicant need to come before the Inland Commission was because of the detention basin in the upland review area.

The drawings showed 1 story ranch units with a 2-car garage and the rest of the units are town houses. There are 2 streets, 1 one is approximately 780’ long and the other is roughly under 250’. The drainage system is catch basins that collect water off the roadways. There are storm drains as well on the plans. There are also separators as well that separates the water and the silt. He spoke about the pond and the catch basins as well as the 50 and 100 year storm and the reducing of the volume for each storm.

The Commission accepted the application.

END SIDE B – TAPE 1

III-D. MISCELLANEOUS

IV. MINUTES

January 10, 2018

Commissioner Kawalutzki motioned to approve the minutes of January 10, 2019. Commissioner Dunford seconded the motion.

A voice vote was taken; motion passed unanimously.

V. ADJOURNMENT

Commissioner Kawalutzki motioned to adjourn. Commissioner Reilly seconded the motion.

A voice vote was taken; motion passed unanimously.

Chairman Zahornasky adjourned the meeting at 9:29 pm.

Respectfully submitted,

Sophia V. Belade
Sophia V. Belade
Clerk – Inland Wetlands
2 tapes available in Town Clerk’s Office